organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,5-Dimethoxyacetanilide

Qing-Lin Lai, Qing-Jie Zhao, Zheng Liu and Jing-Shan Shen*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China Correspondence e-mail: jsshen@mail.shcnc.ac.cn

Received 11 April 2007; accepted 24 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.108; data-to-parameter ratio = 13.6.

The title compound, C₁₀H₁₃NO₃, crystallizes with two molecules in the asymmetric unit. Molecules related by an *a*-axis translation are stacked over each other, bound by $\pi - \pi$ interactions with a perpendicular distance of 3.455 Å. Molecules in adjacent stacks are linked to each other through N- $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Allen et al. (1987); Hall et al. (1992); Hunter & Sanders (1990); Traxler et al. (1999).

Experimental

Crystal data

C10H13NO3 $M_r = 195.21$ Orthorhombic, Pbca a = 7.1956 (6) Å b = 16.8320 (14) Å c = 33.054 (3) Å

V = 4003.4 (6) Å³ Z = 16Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.30 \times 0.20 \times 0.20$ mm

Data collection

Bruker SMART APEXII

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.972, T_{\max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	260 parameters
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
3548 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

19389 measured reflections

 $R_{\rm int} = 0.033$

3548 independent reflections

2808 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O6^{i}$	0.86	2.03	2.8857 (18)	171
$N2 - H2 A \cdots O3^{ii}$	0.86	2.17	2 9799 (19)	158

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Acknowledgement is made to the crew of Topharman Shanghai Co., Ltd for their active cooperation in this work. We also thank the Instrument Analysis and Research Centre of Shanghai University for the structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2120).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hall, R. J., Marchant, J., Oliveira-Campos, A. M. F., Queiroz, M.-J. R. P. & Shannon, P. V. R. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 3439-3450.
- Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Traxler, P., Green, J., Mett, H., Séquin, U. & Furet, P. (1999). J. Med. Chem. 42, 1018-1026

Acta Cryst. (2007). E63, o2782 [doi:10.1107/S1600536807020600]

3,5-Dimethoxyacetanilide

Q.-L. Lai, Q.-J. Zhao, Z. Liu and J.-S. Shen

Comment

The title compound, (I), is an important intermediate used to synthesize a variety of pharmaceuticals, such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (Traxler *et al.*, 1999). In our recent research for the synthesis of potential PDE5 inhitiors, 3,5-dimethoxyanilide (I) was synthesized as one of the structural units. We report here the crystal structure of the title compound, which crystallizes with two molecules in the asymmetric unit.

A view of the molecular structure of (I) is depicted in Fig. 1. In the two distinct molecules, the *N*-acetyl group is oriented at angles of 3.10 (2)° and 20.00 (3)° to the aromatic plane. All bond lengths and angles are normal (Allen *et al.*, 1987). Molecules related by an *a*-axis translation are stacked over each other and the perpendicular distance between the stacking planes is 3.455Å (Fig. 2). It is, therefore, inferred that the stacked molecules are bound to each other by π - π interactions (Hunter & Sanders, 1990). The stacked columns are linked together *via* an intermolecular hydrogen bond in which the amide H act as a donor to O atom (Fig. 2 and Table 1).

Experimental

The title compound was prepared by acetylation of 3,5-dimethoxyaniline according to the method described by Hall *et al.*, (1992). Single crystals suitable for X-ray analysis (m.p. 426 K) were obtained by slow evaporation of a dichloromethane solution at 298 K.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 Å, N—H = 0.86 Å, and U_{iso} = $1.2U_{eq}(C)$ or (N).

Figures

Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. The crystal packing of (I), viewed along the $\langle i\rangle a\langle /i\rangle$ axis. Hydrogen bonds are shown as dashed lines.

3,5-Dimethoxyacetanilide

Crystal data

C₁₀H₁₃NO₃

 $M_r = 195.21$ Orthorhombic, *Pbca* a = 7.1956 (6) Å b = 16.8320 (14) Å c = 33.054 (3) Å V = 4003.4 (6) Å³ Z = 16 $F_{000} = 1664$

Data collection

Bruker SMART APEXII diffractometer	3548 independent reflections
Radiation source: fine-focus sealed tube	2808 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 298(2) K	$\theta_{max} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.972, T_{\max} = 0.981$	$k = -19 \rightarrow 20$
19389 measured reflections	$l = -30 \rightarrow 39$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 1.2714P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.042$	$(\Delta/\sigma)_{\text{max}} = 0.001$
$wR(F^2) = 0.108$	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
3548 reflections	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
260 parameters	Extinction coefficient: 0.0015 (4)

 $D_x = 1.296 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4958 reflections $\theta = 2.5-24.7^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$ Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.9040 (2)	0.66216 (10)	0.91166 (5)	0.0360 (4)
C2	0.7495 (2)	0.70799 (10)	0.92004 (5)	0.0416 (4)
H2	0.7399	0.7590	0.9095	0.050*
C3	0.6087 (2)	0.67783 (11)	0.94428 (5)	0.0430 (4)
C4	0.6212 (3)	0.60184 (11)	0.96012 (5)	0.0464 (5)
H4	0.5277	0.5817	0.9766	0.056*
C5	0.7761 (3)	0.55664 (10)	0.95083 (5)	0.0428 (4)
C6	0.9191 (2)	0.58522 (10)	0.92700 (5)	0.0404 (4)
H6	1.0226	0.5540	0.9214	0.048*
C7	1.2042 (2)	0.66862 (10)	0.87336 (5)	0.0410 (4)
C8	1.3073 (3)	0.72307 (12)	0.84542 (7)	0.0596 (6)
H8A	1.4291	0.7331	0.8561	0.089*
H8B	1.2409	0.7723	0.8430	0.089*
H8C	1.3181	0.6987	0.8193	0.089*
С9	0.3195 (3)	0.70352 (14)	0.97704 (7)	0.0659 (6)
H9A	0.2630	0.6562	0.9665	0.099*
H9B	0.2275	0.7446	0.9792	0.099*
Н9С	0.3705	0.6926	1.0033	0.099*
C10	0.9237 (3)	0.42958 (11)	0.95603 (7)	0.0647 (6)
H10A	0.9281	0.4240	0.9271	0.097*
H10B	0.9047	0.3784	0.9682	0.097*
H10C	1.0388	0.4516	0.9655	0.097*
C11	0.7292 (2)	0.50583 (10)	0.83936 (5)	0.0371 (4)
C12	0.8709 (2)	0.45172 (10)	0.83355 (5)	0.0412 (4)
H12	0.8650	0.4016	0.8454	0.049*
C13	1.0227 (2)	0.47288 (10)	0.80982 (5)	0.0420 (4)
C14	1.0337 (3)	0.54668 (11)	0.79191 (5)	0.0460 (4)
H14	1.1359	0.5604	0.7761	0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.8897 (3)	0.60002 (10)	0.79786 (5)	0.0454 (5)
C16	0.7373 (3)	0.58076 (10)	0.82121 (5)	0.0426 (4)
H16	0.6414	0.6171	0.8248	0.051*
C17	0.5121 (2)	0.41904 (10)	0.87722 (5)	0.0424 (4)
C18	0.3505 (3)	0.42184 (12)	0.90562 (7)	0.0607 (6)
H18A	0.2966	0.3698	0.9078	0.091*
H18B	0.2591	0.4583	0.8955	0.091*
H18C	0.3919	0.4392	0.9318	0.091*
C19	1.3080 (3)	0.43027 (14)	0.78001 (6)	0.0651 (6)
H19A	1.2630	0.4393	0.7530	0.098*
H19B	1.3903	0.3854	0.7800	0.098*
H19C	1.3736	0.4765	0.7893	0.098*
C20	0.7776 (3)	0.73162 (12)	0.78511 (7)	0.0663 (6)
H20A	0.6589	0.7135	0.7756	0.099*
H20B	0.8127	0.7787	0.7706	0.099*
H20C	0.7697	0.7434	0.8135	0.099*
N1	1.03993 (19)	0.69747 (8)	0.88680 (4)	0.0405 (4)
H1	1.0144	0.7449	0.8789	0.049*
N2	0.5737 (2)	0.49023 (8)	0.86409 (4)	0.0418 (4)
H2A	0.5105	0.5310	0.8717	0.050*
01	0.46382 (18)	0.72883 (8)	0.95061 (4)	0.0596 (4)
O2	0.77427 (19)	0.48116 (8)	0.96687 (4)	0.0603 (4)
O3	1.26690 (17)	0.60353 (7)	0.88250 (4)	0.0516 (4)
O4	1.15542 (19)	0.41493 (8)	0.80618 (4)	0.0606 (4)
O5	0.9123 (2)	0.67166 (8)	0.77872 (5)	0.0684 (4)
O6	0.58211 (19)	0.35588 (7)	0.86658 (4)	0.0593 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0339 (9)	0.0350 (9)	0.0390 (9)	-0.0056 (7)	-0.0013 (7)	0.0005 (7)
C2	0.0427 (10)	0.0338 (9)	0.0483 (10)	-0.0018 (8)	0.0016 (8)	0.0004 (8)
C3	0.0389 (10)	0.0420 (10)	0.0481 (10)	-0.0026 (8)	0.0049 (8)	-0.0096 (8)
C4	0.0449 (11)	0.0473 (11)	0.0472 (11)	-0.0106 (9)	0.0100 (9)	-0.0012 (9)
C5	0.0464 (10)	0.0379 (10)	0.0442 (10)	-0.0077 (8)	0.0019 (9)	0.0046 (8)
C6	0.0393 (9)	0.0346 (9)	0.0472 (10)	-0.0029 (8)	0.0015 (8)	0.0032 (8)
C7	0.0388 (9)	0.0355 (10)	0.0488 (10)	-0.0020 (8)	0.0023 (8)	0.0045 (8)
C8	0.0496 (12)	0.0519 (12)	0.0772 (14)	0.0034 (10)	0.0167 (11)	0.0182 (10)
C9	0.0507 (12)	0.0783 (16)	0.0687 (14)	-0.0001 (11)	0.0212 (11)	-0.0086 (12)
C10	0.0717 (14)	0.0412 (11)	0.0811 (15)	0.0054 (10)	0.0221 (12)	0.0182 (10)
C11	0.0434 (10)	0.0345 (9)	0.0334 (9)	-0.0049 (8)	0.0004 (8)	-0.0004 (7)
C12	0.0476 (10)	0.0356 (9)	0.0402 (10)	-0.0011 (8)	0.0036 (8)	0.0060 (8)
C13	0.0433 (10)	0.0430 (10)	0.0395 (10)	0.0013 (8)	0.0008 (8)	0.0013 (8)
C14	0.0432 (10)	0.0491 (11)	0.0458 (10)	-0.0093 (9)	0.0047 (8)	0.0052 (9)
C15	0.0540 (11)	0.0349 (10)	0.0473 (10)	-0.0089 (9)	-0.0012 (9)	0.0072 (8)
C16	0.0475 (10)	0.0328 (9)	0.0474 (10)	-0.0007 (8)	0.0019 (9)	0.0020 (8)
C17	0.0418 (10)	0.0371 (10)	0.0484 (11)	-0.0006 (8)	0.0018 (9)	0.0091 (8)
C18	0.0609 (13)	0.0515 (12)	0.0698 (14)	0.0009 (10)	0.0218 (11)	0.0146 (10)

C19 C20 N1 N2 O1 O2 O3 O4 O5 O6	0.0476 (12) 0.0742 (15) 0.0377 (8) 0.0471 (9) 0.0494 (8) 0.0619 (9) 0.0492 (8) 0.0530 (8) 0.0704 (10) 0.0538 (8)	0.0824 (16) 0.0407 (11) 0.0306 (7) 0.0312 (8) 0.0505 (8) 0.0446 (8) 0.0363 (7) 0.0597 (9) 0.0442 (8) 0.0321 (7)	0.0652 (14) 0.0838 (16) 0.0533 (9) 0.0473 (9) 0.0788 (10) 0.0742 (9) 0.0694 (9) 0.0691 (9) 0.0907 (11) 0.0920 (11)	$\begin{array}{c} 0.0079 \ (11) \\ -0.0050 \ (11) \\ 0.0007 \ (6) \\ 0.0012 \ (7) \\ 0.0038 \ (6) \\ -0.0014 \ (7) \\ 0.0076 \ (6) \\ 0.0127 \ (7) \\ -0.0032 \ (7) \\ 0.0036 \ (6) \end{array}$	0.0153 (11) -0.0032 (13) 0.0051 (7) 0.0114 (7) 0.0238 (7) 0.0207 (8) 0.0107 (7) 0.0207 (7) 0.0199 (8) 0.0194 (8)	0.0046 (12) 0.0169 (11) 0.0097 (6) 0.0023 (6) -0.0031 (7) 0.0197 (7) 0.0104 (6) 0.0153 (7) 0.0249 (7) 0.0095 (7)
Geometric paran	ieters (Å, °)					
C1 - C2		1381(2)	C11-		1 398	(2)
C1 - C6		1.301 (2)	C11-	_N2	1.598	(2) (2)
C1		1.393(2)	C12-		1 391	(2) (2)
$C^2 - C^3$		1 388 (2)	C12-	_H12	0.930	0
C2—H2		0.9300	C13-	04	1 371	(2)
C3—01		1.366 (2)	C13-		1.378	(2)
C3—C4		1.385 (3)	C14-		1.385	(3)
C4—C5		1.384 (3)	C14-	—H14	0.930	0
С4—Н4		0.9300	C15-	05	1.371	(2)
С5—О2		1.377 (2)	C15-	—C16	1.379	(2)
C5—C6		1.382 (2)	C16-	—H16	0.930	0
С6—Н6		0.9300	C17-		1.228	(2)
С7—ОЗ		1.223 (2)	C17-	—N2	1.349	(2)
C7—N1		1.353 (2)	C17-	C18	1.495	(3)
С7—С8		1.498 (2)	C18-	—H18A	0.960	0
C8—H8A		0.9600	C18-	—H18B	0.960	0
C8—H8B		0.9600	C18-	—H18C	0.960	0
C8—H8C		0.9600	C19-	04	1.421	(2)
С9—О1		1.423 (2)	C19-	—H19A	0.960	0
С9—Н9А		0.9600	C19-	—H19B	0.960	0
С9—Н9В		0.9600	C19-	—Н19С	0.960	0
С9—Н9С		0.9600	C20-	05	1.415	(3)
C10—O2		1.428 (2)	C20-	-H20A	0.960	0
C10—H10A		0.9600	C20-	—H20B	0.960	0
C10—H10B		0.9600	C20-	-H20C	0.960	0
C10—H10C		0.9600	N1—	-H1	0.860	0
C11—C12		1.381 (2)	N2—	-H2A	0.860	0
C2—C1—C6		120.54 (16)	C13-	—С12—Н12	120.3	
C2-C1-N1		116.11 (14)	04—	-C13C14	124.2	9 (16)
C6-C1-N1		123.34 (15)	04—	-C13C12	114.4	9 (15)
C1—C2—C3		119.96 (16)	C14-		121.2	3 (17)
С1—С2—Н2		120.0	C13-		118.6	7 (17)
С3—С2—Н2		120.0	C13-		120.7	
O1—C3—C4		124.89 (16)	C15-		120.7	
O1—C3—C2		114.56 (16)	05—	-C15-C16	124.0	1 (17)
C4—C3—C2		120.56 (17)	05—	-C15C14	114.5	3 (16)

C5—C4—C3	118.43 (16)	C16—C15—C14	121.46 (16)
С5—С4—Н4	120.8	C15—C16—C11	119.05 (17)
C3—C4—H4	120.8	C15—C16—H16	120.5
O2—C5—C6	123.21 (16)	C11—C16—H16	120.5
O2—C5—C4	114.46 (16)	O6—C17—N2	122.81 (16)
C6—C5—C4	122.32 (16)	O6—C17—C18	121.76 (16)
C5—C6—C1	118.18 (16)	N2-C17-C18	115.43 (16)
С5—С6—Н6	120.9	C17—C18—H18A	109.5
C1—C6—H6	120.9	C17—C18—H18B	109.5
O3—C7—N1	124.26 (16)	H18A—C18—H18B	109.5
O3—C7—C8	121.16 (16)	C17—C18—H18C	109.5
N1—C7—C8	114.57 (15)	H18A—C18—H18C	109.5
С7—С8—Н8А	109.5	H18B—C18—H18C	109.5
С7—С8—Н8В	109.5	O4—C19—H19A	109.5
H8A—C8—H8B	109.5	O4-C19-H19B	109.5
С7—С8—Н8С	109.5	H19A—C19—H19B	109.5
H8A—C8—H8C	109.5	O4—C19—H19C	109.5
H8B—C8—H8C	109.5	H19A—C19—H19C	109.5
O1—C9—H9A	109.5	H19B—C19—H19C	109.5
O1—C9—H9B	109.5	O5—C20—H20A	109.5
Н9А—С9—Н9В	109.5	O5—C20—H20B	109.5
О1—С9—Н9С	109.5	H20A-C20-H20B	109.5
Н9А—С9—Н9С	109.5	O5—C20—H20C	109.5
Н9В—С9—Н9С	109.5	H20A—C20—H20C	109.5
O2-C10-H10A	109.5	H20B-C20-H20C	109.5
O2-C10-H10B	109.5	C7—N1—C1	130.28 (14)
H10A—C10—H10B	109.5	C7—N1—H1	114.9
O2-C10-H10C	109.5	C1—N1—H1	114.9
H10A-C10-H10C	109.5	C17—N2—C11	127.76 (15)
H10B—C10—H10C	109.5	C17—N2—H2A	116.1
C12—C11—C16	120.29 (16)	C11—N2—H2A	116.1
C12-C11-N2	122.95 (15)	C3—O1—C9	117.57 (16)
C16—C11—N2	116.74 (15)	C5—O2—C10	117.22 (14)
C11—C12—C13	119.30 (16)	C13—O4—C19	117.55 (15)
C11—C12—H12	120.3	C15—O5—C20	118.46 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N1—H1···O6 ⁱ	0.86	2.03	2.8857 (18)	171
N2—H2A····O3 ⁱⁱ	0.86	2.17	2.9799 (19)	158
Symmetry codes: (i) $-x+3/2$, $y+1/2$, z ; (ii) $x-1$, y , z .				

Fig. 2

